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"Best" Interpolation, Differentiation, and Integration 
Approximations on the Hardy Space H2 

By Leon Winslow 

Abstract. A general formula is developed which gives the "best" approximation for any 
linear functional on the Hardy space H2. Some "best" approximations are given for inter- 
polation, differentiation, and integration and are compared to polynomial approximations. 

I. Introduction. Several recent papers [3]-[6] have investigated the numerical 
differentiation and interpolation of analytic functions by using the Cauchy integral 
formula to express the derivative or function value in terms of a contour integral and 
then using various numerical methods to approximate the contour integral. Without 
loss of generality we can assume all functions are analytic in the unit disk and approxi- 
mations are made at z = 0. Then the resulting approximations are of the form 
f(R)(0) = Sk akf(re2rik/N), where 0 < r < 1, and error estimates are in terms of 
the Hardy H2 norm 

2 f2 r . 

(1.1) 'lifl = I f(eiO)f(eO) dG. 

Now any linear approximation of the form Ek- akf(rik), where k = exp(2irik/N), 
is a linear functional on f, and in particular the error introduced by such an approxi- 
mation, f '(0) - jf a kf(rik), is itself a linear functional on f. Sard [7, Chapter 2] 
and Davis [1, Chapter 14] present methods of generating "best approximation" 
formulas by the use of such error functionals. This paper uses techniques similar to 
those of Davis to develop a class of "best approximations" as follows: Given a value 
of r (O < r < 1) and an integer N > 1, we are concerned with the best approximation 
having the form 

N 

(1.2) Lf = E akf(rjk), 
k=1 

where 

(1.3) k= e 2kIN 

Some examples are given to illustrate the resulting "best approximations." In 
Section III, it is shown that the best approximation does not differ significantly from 
polynomial interpolation and differentiation using the same interpolating points, 
whereas in Section IV it is shown that the "best" integration method is significantly 
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better than polynomial approximations to the integral using the same interpolating 
points. 

II Error Functionals on the Hardy Space H2. The Hardy space H2 consists of 
those functions which (a) are analytic in the unit disk and (b) have a finite Hardy 
H2 norm. (See Hoffman [2] for a development of Hardy spaces.) An inner product 
is defined on H2 by 

(f(Z), g(z)) 2- f2r f(e")g(e ) dO. 

This inner product is compatible with the Hardy H2 norm in the sense that 

(2.1) 1 If I 12 = (1(z), f(z)) 

and with this inner product, H2 is a separable Hilbert space. Hence, by the Riesz 
representation theorem, for every bounded linear functional L defined on H2, there 
exists a function h(z) in H2, called the representer of L, such that Lf(z) = (f(z), h(z)) 
for all f(z) in H2. For example, using the method given in [1, Theorem 12.6.6], it is 
easy to show that the representer of the bounded linear functional which maps the 
function f into f(w) for a fixed w in the unit disk is (1 - Dz)-'. 

Now, the magnitude of the error functional E for the N term approximation of 
the linear functional L is 

N N 

(2.2) fEf I = Lf - akf(rSk) = (z), h(z) - E k(1 - z) 
k-= k=1 

where h(z) is the representer of L and (1 - rtkz)- is the representer of the functional 
which evaluates a function at rik where 0 < r < 1. Applying the Schwarz inequality 
to (2.2) gives 

N 

ElI < IIf(z)I I |h(z) - E ak(k - rtkZ) | 
k=1 

?C 11f(z11, 

where 
N 

(2.3) C = h(z) - E da(l - r&ZY| 

is independent of the function f. 
The "best approximation" is defined as the one which minimizes C for a given r 

and N. According to Davis [1, Theorem 8.6.3] the coefficients dk of the best approxi- 
mation h(z) - E l ak(l - rkkz= are given by the solution of N equations in N 
unknowns RA = H where 

Rik (1 - r2% t Y1, Ak = a*, and Hk = h(rk). 

The solution to this system of equations can be obtained by a slight variation of a 
method given by Wilf [8]. The di are 

(1 - r2N)2 N 2)N( 
(2.4) a 2 2NV-2 

L. r2ikY1 ) - 1, ^'', N. 
N r k=l 
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Thus the approximation to Lf which minimizes the error estimate lEf l, the "best 
approximation", is Ek-1 akf(r k) where a, is given by (2.4). This error estimate is 
sharp in the sense that it is an equality for f(z) = h(z) - k-1 - k(l i$z)` where 
a, is determined by (2.4). 

HI. Interpolation and Differentiation. For n = 0, 1, * , the representer for 
f(nJ(0) is n !z. So we can consider interpolation and differentiation at zero simul- 
taneously. Substituting n!z' into (2.4) and simplifying gives 

(3.1) a= (1 - r2N)(n!)r2,'1.N-8-8/N for k = 1, 2, N 

where m is the smallest nonnegative integer such that mN < n < (m + l)N. This 
gives the "best approximation" 

N 

(3.2) jf(n(O) 
- [(1 - r2N)(n!)r 2tNn/N] E CWf(rW) for n = 0, 1, *. 

k-i 

To evaluate the error constant C we substitute h(z) = n!z" and expression (3.1) for 
the ak's into (2.3) and simplify to obtain 

C2 = (n!)2[1 - ( - r 2)r 2mNi 

One interesting feature of this approximation is that it allows approximation with 
N < n, something that is impossible with polynomial approximation methods. 
Unfortunately for N < n the error constant C is an increasing function of m. Its 
minimum value, which occurs at m = 1 and r21N iS 0.87n!. Furthermore the 
limit, as m -* o, of C is n!, so there is a nonzero lower bound for the error estimate 
which increases with n. Practically then, such approximation schemes have little to 
recommend them. 

When N > n (and so m = 0) the above formulas take the simpler form 

C = (n!)rN and lEf| < (n!)rN I1IJI 

Many approximations are based upon making the approximation exact for all 
polynomials up to some degree, whereas the ones presented here minimize the error 
over all functions in H2 at the cost of polynomial approximations. Consider approxi- 
mation (3.2) with N > n acting on Zk. The error is 0 except when k - n is a multiple 
of N. Since every function f in H2 has a Taylor series expansion about zero, we see 
that the error Ef is introduced by the terms zn zn+N zn+2N 

Using the same interpolating points, Lyness [5] has developed a polynomial 
approximation which is exact for all polynomials of degree equal to or less than 
N + n - 1. .(Interestingly, the polynomial coefficients differ from the "best" ones 
only by a multiplicative constant.) The error constant C for the polynomial approxi- 
mation is (n !)rN/(l _ r2N)1/2 and the error Ef is introduced by the terms zn+N, zn+2N, _ * 

in the Taylor expansion of f. Thus the "best approximation" reduces the polynomial 
error constant by the factor (1 ,2N)1/2 at the cost of introducing the zn term in Ef. 
The "best approximation" is significantly better than the polynomial approximation 
only for small values of N and values of r close to 1. 
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IV. Integration. The representer for integration along the real axis from -b 
to b is 

(4.1) hI(z) = - In 1(1 + bz)/(1 - bz)j. 
z 

This leads to the quadrature rule 
N 

(4.2) If E E akf(rh), 
Ic 1 

where 

(4.3) 
r2N2 N 

I In+ bI|r~ 

and as before 

(4.4) e2i 
r iIN 

To evaluate the error constant C, the ak's were computed from (4.3) and these 
were substituted in (2.3) to compute C. This was done numerically for various values 
of b and r. The computations were ill-conditioned in the sense that even using 16- 
significant-digit arithmetic, it was difficult to compute C to 3 significant digits when 
N> 15 or C < 10-8. The condition of the computations is also dependent upon r. 
For values of r < b/2 the ak's tend to be large and vary in sign and the computations 
are ill-conditioned. Whereas for r 2 b, the values of the ak's are positive and of the 
same order of magnitude and the computations are well conditioned. 

Since no function in H2 has singularities inside the unit disk and every point out- 
side the unit disk is a singularity for at least one function in H2, we expect the mag- 
nitude of C to decrease as b decreases and the interval of integration moves away 
from the region containing singularities. This is indeed the case. 

For b = .125 all singularities are some distance from [-b, b] and to 3 significant 
digits (for N ? 15) the values of C fit the curve C2 = .0622r2N. (This curve for C 
and the one given in the next paragraph were obtained from the numerically com- 
puted values of C.) 

As [-b, b] approaches possible singularities, the behavior of C becomes more 
erratic. For b = 0.5 and r = 0.75, C2 _ l.Olr2N. But for r = 0.5, C2 is below this 
curve for odd values of N and above it for even values of N with the fit improving as 
N increases. For r = 0.625, C2 is also above and below the same curve with -the fit 
improving until for N > 11 the fit is accurate to 3 significant digits. 

By the time b increases to 0.875, the behavior of C is so erratic that for N ? 15 
it never comes close to fitting a simple curve. 

Lyness [6] has developed some polynomial approximations to the integral using 
interpolation at the same points used here, The error constant for the polynomial ap- 
proximations is C - 2brN/(1 - r2)l2 for even values of N and C -r 2brN1-/(l-r )- / 

for odd values of N. For b close to zero, as expected, the polynomial approxima- 
tion is close to the "best approximation". However, as the region of integration 
approaches possible singularities, the "best approximation" becomes significantly 
better than polynomial approximation. 
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Remark. For large values of N, Lyness's polynomial approximations are much 
better, in the sense of having a smaller constant C, than polynomial approximations 
using equally spaced points on the real axis. For example, for b = 0.5, Hammerlin 
[9] has shown that the trapezoid method, Simpson's method, and Boole's method 
have an error constant of the form C Cj(N - I)-2 where i is the degree of the 
polynomial approximation and C. is a constant dependent upon the method. 

Conclusion. We have developed a general formula for directly computing the 
"best" approximation to any linear functional on H2. This formula was then used 
to develop some "best" interpolation, differentiation, and integration approximations. 
It is interesting to note, that for interpolation and differentiation, polynomial approxi- 
mations using the same interpolating points are very close to the "best" approxima- 
tions. However, this is not true for approximate integration. 

The methods discussed in this paper rely on function values at equally spaced 
points on the circle with radius r less than one and center at the origin. The error 
estimates for interpolation, differentiation, and integration using these points are 
of the form C -- O(rN) whereas the error estimates using equally spaced points on 
the real line, at least for integration, are of the form C --. O(N-t) where i is a constant 
dependent upon the method. 
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